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Abstract
The method of separation of variables (SoV) is employed for the spectral
problem of the XXZ model. The Baxter difference equation is resolved by
means of a special isotropic asymptotic expansion. States are identified by
multiplicities of limiting values of the Bethe parameters. As an application,
the statistical properties of integral spectra are investigated. It is shown that the
power function gives the more correct description of nearest-neighbour spacing
distribution density at intermediate spacings as compared with the exponential.

PACS numbers: 02.30.Ik, 03.65.Fd, 05.30.−d, 75.10.Pq

1. Introduction

The XXZ model is an integrable periodic chain of N particles where between adjacent elements
a spin interaction exists. Let s be the spin of each particle; the Hamiltonian of the model reads

H =
N∑

n=1

Js

(
S+

nS−
n+1 + S−

n S+
n+1, S

3
n, S

3
n+1

)
, SN+1 ≡ S1. (1)

Here Js is a certain polynomial [1] of order 4s on the spin component operators Sn = {
S3

n, S
+
n ,

S−
n

}
, which obey the quantum Lie algebra Uq(sl(2)) commutation relations

[
S3

n, S
±
n

] = ±S±
n ,

[
S+

n , S−
n

] = sin(2�S3
n)

sin �
, (2)

cos
(
�
(
2S3

n + 1
)) − 2S−

n S+
n sin2 � = cos(�(2s + 1)). (3)

The special form of dependence Js on S± means a partial isotrophy of the system; a real
parameter � determines the extent of anisotrophy. In the limiting case � → 0 algebra
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Uq(sl(2)) turns into standard sl(2) and a completely isotropic XXX model appears. At
s = 1/2 XXZ is a well-known partially isotropic chain introduced by Heisenberg [2]:

H =
N∑

n=1

1

2

(
S+

nS−
n+1 + S−

n S+
n+1

)
+ cos �S3

nS
3
n+1. (4)

The integrability of the model can be described by means of the R-matrix formalism of
the quantum inverse scattering method [3]. The local Lax matrix for the XXZ

Ln(u) =
(

−i sinh
(
u − cn + i�S3

n

)
S−

n sin �

S+
n sin � −i sinh

(
u − cn − i�S3

n

)) (5)

obeys the fundamental commutation relations with the trigonometric R-matrix. The
monodromy matrix

T (u) ≡
(

A(u) B(u)

C(u) D(u)

)
def= LN(u) . . . L1(u) (6)

also satisfies the same relations. Its trace t (u) = A(u) + D(u) serves as a generating function
for the integrals of motion

t (u) = I +
1 eNu + I +

2 e(N−2)u + · · · + I−
2 e−(N−2)u + I−

1 e−Nu. (7)

The leading coefficients of t (u) coincide up to the complex factor I1
def= (i)N e

∑
cnI +

1 =
(−i)N e− ∑

cnI−
1 . So exactly N independent coefficients form the basis of the ring of mutually

commuting conserved quantities. Hamiltonian (1) belongs to this ring [1].
The spectral problem is formulated as

t (u)� = τ(u)�, (8)

where eigenfunction � does not depend on u and the coefficients of the exponential polynomial
τ(u) are target values of the integrals of motion.

The usual way to solve (8) is via an algebraic Bethe ansatz. According to this method the
eigenfunction is constructed as

� = B(uM)B(uM−1) . . . B(u1)�0, (9)

where �0 is a ferromagnetic vacuum state such that C(u)�0 = 0 for any u and u1, u2, . . . , uM

is the set of complex parameters called the Bethe vector. The length of the Bethe vector M,
meaning the number of excitations, fixes the value of the first integral of motion

I1 = 1

2N−1
cos

(
�

N∑
n=1

S3
n

)
= 1

2N−1
cos (� (Ns − M)) . (10)

The substitution of (9) into (8) results in a system of nonlinear equations on Bethe parameters
u1, u2, . . . , uM

M∏
j=1

sinh (uj − um − i�)

sinh (uj − um + i�)
= −

N∏
n=1

sinh (um − cn + i�s)

sinh (um − cn − i�s)
, m = 1, . . . , M. (11)

The values of integrals of motion arise from

τ(u) = (−i)N
N∏

n=1

sinh(u − cn + i�s)

M∏
m=1

sinh(u − um − i�)

sinh(u − um)

+ (−i)N
N∏

n=1

sinh(u − cn − i�s)

M∏
m=1

sinh(u − um + i�)

sinh(u − um)
, (12)
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which is actually an exponential polynomial because the poles at points u1, . . . , uM are
cancelled due to (11).

The complexity of Bethe equations (11) makes them inconvenient in practical
computations. Moreover, the variety of completely integrable models cannot be treated
with the Bethe ansatz because of the absence of the vacuum state. This forces us to look for
another approach to solve (8).

2. Separation of variables (SoV)

In the 1990s a new method to solve spectral problem (8) was developed [4–6]. It implies
conversion to a representation where the eigenfunction separates into one-variable factors.
The eigenfunction in initial representation x is constructed as

�(x) =
∑
···
c1−i�(s−1)

v1=c1−i�s

. . .
∑
···
cN−1−i�(s−1)

vN−1=cN−1−i�s

K(x |v1, . . . , vN−1 )�(v1, . . . , vN−1), (13)

where a summation over a hyperoctant grid of spacing i� in CN−1 is carried out. To factorize
the eigenfunction in the new representation �(v1, . . . , vN−1), the special condition is imposed
on the transformation kernel

C(vj )K(x |v1, . . . , vN−1 ) = 0, j = 1, . . . , N − 1. (14)

It guarantees A and D act as shift operators on K(x |v1, . . . , vN−1 ):

A(vk)K(x |. . . , vk, . . . ) = (−i)N
N∏

n=1

sinh(vk − cn − i�(s + 1))K(x |. . . , vk − i�, . . . ),

D(vk)K(x |. . . , vk, . . . ) = (−i)N
N∏

n=1

sinh(vk − cn + i�(s + 1))K(x |. . . , vk + i�, . . . ).

As a result of the substitution of (13) into (8) we get

�(v1, . . . , vN−1) =
∏
i �=j

sinh(vi − vj )

N−1∏
k=1

ϕk(vk), (15)

where each factor ϕk obeys the same Baxter equation

τ(v)ϕ(v) = (−i)N
N∏

n=1

sinh(v − cn − i�s)ϕ(v + i�)

+ (−i)N
N∏

n=1

sinh(v − cn + i�s)ϕ(v − i�). (16)

Thus the separation of variables adds up to a one-dimensional difference equation.
Unfortunately, the method gives no direct instructions for resolving (16). Nevertheless, the
connection with the Bethe ansatz allows us to define the generic class of solutions. Substituting
ϕ(v) = ∏M

m=1 sinh(v − um) into (16) one can get the same expression for τ(v) as (12). This
means that the target solution of the Baxter equation is an exponential polynomial of order M
with zeros as the Bethe parameters.

The technique employed in the following section to work with the Baxter equation is
similar to that used in [7], where the case of entirely isotropic XXX model is examined. This
technique implies the consideration of the simultaneous limit of two model parameters, which
allows us to construct the chain of successive approximations. In the first order a quantization

3
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s S=

s

0

Figure 1. Special isotropic limit.

occurs, so every state is identified by a certain multi-index value. The computations are made
in terms of coefficients at poles, originated as the functions are normalized to the first-order
approximation ones.

3. Baxter equation in a special isotropic limit

Let us consider the limit � → 0 constrained by �s
def= S ∼ const as is shown in figure 1. We

substitute asymptotic expansions

τ(v) = τ0(v) + τ1(v)� + τ2(v)�2 + · · · , (17)

ϕ(v) = ϕ0(v) + ϕ1(v)� + ϕ2(v)�2 + · · · (18)

into the Baxter equation (16) and simultaneously replace ϕ(v ± i�) by its Taylor series

ϕ(v ± i�) = ϕ(v) ± iϕ′(v)� ∓ ϕ′′(v)

2
�2 ± · · · . (19)

The comparison of coefficients at the same degrees of � on opposite sides of the equation
gives

τ0(v)ϕ0(v) = (�+(v) + �−(v))ϕ0(v), (20)

τ1(v)ϕ0(v) + τ0(v)ϕ1(v) = (�+(v) + �−(v))ϕ1(v) − i(�+(v) − �−(v))ϕ′
0(v), (21)

...
K∑

k=0

τk(v)ϕK−k(v) =
K∑

k=0

ik(�−(v) + (−1)k�+(v))

k!
ϕ

(k)
K−k(v)

...

(22)

where the symbols

�±(v) = (−i)N
N∏

n=1

sinh(v − cn ± iS), (23)

are introduced. Limiting values of the integrals of motion follow directly from (20)

τ0(v) = (�+(v) + �−(v)). (24)

4
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3.1. First approximation

The first approximation allows us to do quantization due to the polynomial nature of ϕ(v)

function.
Taking into account (24) we transform formula (21) into

τ1(v)ϕ0(v) = −i(�+(v) − �−(v))ϕ′
0(v). (25)

This immediately gives

ϕ0(v) =
N∏

n=1

sinhmn(v − rn), (26)

τ1(v) = 2(−i)N−1 sin NS

N∏
n=1

sinh(v − rn)

N∑
n=1

mn coth(v − rn), (27)

where quantum numbers m = {m1,m2, . . . , mN } define values of τ1(v) at � → 0 and
r1, r2, . . . , rN are roots of the polynomial �+(v) − �−(v):

(�+(v) − �−(v)) = 2(−i)N sin NS

N∏
n=1

sinh(v − rn). (28)

It can be shown that r1, r2, . . . , rN are distinctive at s > 0, are real or their imaginary part is
multiple of π

2 and
∑

rn = ∑
cn − iπ

2 . For a homogeneous magnet (c1 = c2 = · · · = cN = 0)

they are expressed explicitly as

rn = arctanh

(
tan �

tan πn
N

)
, n = 1, . . . , N. (29)

Roots r1, r2, . . . , rN are limiting values of the Bethe parameters and the numbers
{m1,m2, . . . , mN } are their multiplicities respectively. The sum of the latters is the number M
of excitations of the system

N∑
n=1

mn = M. (30)

Constraint (30) which expresses the value of the first integral of motion (10) is fixed. The
multi-index m length (N) exceeds that in the entirely isotropic case [7] by unity, because due
to anisotrophy the square of the total spin of the system is not conserved so the considered
quantum space dimension is larger.

3.2. Kth approximation: induction condition

Let us assume that the (K − 1)th approximation of the scheme is achieved, i.e. functions
τ0, τ1, . . . , τK−1 and ϕ0, ϕ1, . . . , ϕK−2 are constructed. The aim is to obtain the next, Kth,
correction to the Baxter equation solution ϕK−1 and simultaneously coefficients at �K in the
integral decompositions expressed by means of τK .

Due to (24), terms at k = 0 on either side of (22) cancel and we arrive at the inhomogeneous
first-order differential equation for ϕK−1(v):

i(�+(v) − �−(v))ϕ′
K−1(v) + τ1(v)ϕK−1(v)

=
K∑

k=2

(
ik(�−(v) + (−1)k�+(v))

k!
ϕ

(k)
K−k(v) − τk(v)ϕK−k(v)

)
. (31)

5
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Function ϕ0(v) (26) is a solution of the corresponding homogeneous equation. Our goal is the
partial solution of the inhomogeneous one, namely

ϕK−1(v) =
∏N

n=1 sinhmn(v − rn)

2(−i)N−1 sin NS

×
∫ K∑

k=2

(
− ik(�−(v) + (−1)k�+(v))

k!
ϕ

(k)
K−k(v) + τk(v)ϕK−k(v)

)

× dv∏N
n=1 sinhmn+1(v − rn)

. (32)

In order for ϕK−1 to be an exponential polynomial, the integrand in (32) must have no poles
of first order. This condition defines coefficients of τK(v).

Let us introduce new quantities

τ̃k (v) = τk (v)

2 (−i)N−1 sin NS
∏N

n=1 sinh(v − rn)
(33)

and

ϕ̃k (v) = ϕk (v)∏N
n=1 sinhmn(v − rn)

. (34)

Corrections to integrals of motion are described entirely by N coefficients at first-order poles
of τ̃k at points r1, r2, . . . , rN . The sum of the coefficients is constrained by the kth correction
to the first integral of motion (10) in the considered limit

I1 = cos(NS) + sin(NS)M� − cos(NS)M2

2!
�2 − sin(NS)M3

3!
�3 + · · · .

Corrections to the Baxter equation solution are uniquely defined by coefficients at ϕ̃k

poles of order up to mn inclusive, at points rn, n = 1, . . . , N . The total number of coefficients
is M (30).

In terms of pole characteristics the formula (32) reads

ϕ̃K−1 =
∫ ({

−
K∑

k=2

((̃τ0 − i) + (−1)k(̃τ0 + i))
ik

(
ϕ̃K−k

∏N
n=1 sinhmn(v − rn)

)(k)

2k!
∏N

n=1 sinhmn(v − rn)

+
K−1∑
k=2

τ̃kϕ̃K−k

}
+ τ̃K

)
dv. (35)

The expression in braces has poles of order from the first to the (mn + 1)th inclusive, at points
rn, n = 1, . . . , N . Pole coefficients of τ̃K are equated to coefficients at first-order poles. As
a result, the unwanted logarithmic component cancels and the function ϕ̃K−1 has the required
pole characteristics, i.e. its poles order does not exceed mn.

Thus the solution of the Baxter equation (16) reduces to the following procedure. The first
step is to determine roots r1, . . . , rN of the exponential polynomial �+(v) − �−(v) (28) and
assign the value of multi-index m = {m1, . . . , mN }. This allows us to initiate an asymptotic
approximation chain (35) starting from ϕ̃0(v) ≡ 1 and

τ̃0(v) = −i
�+(v) + �−(v)

�+(v) − �−(v)
, τ̃1(v) =

N∑
n=1

mn

cosh(v − rn)

sinh(v − rn)
.

The computation of integral (35) adds up to a manipulation with the finite sets of real numbers.
These numbers are actually the coefficients at poles of various orders at points r1, . . . , rN

6
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Table 1. Normalized energy values E/N for states {0, 1, 1, 0}, {1, 2, 0, 0} and {2, 0, 0, 1}
depending on the approximation order K. N = 4, c1 = c2 = c3 = c4 = 0, s = 1, � = π/10. In
the last row the values reported in [8] are placed.

E/N

K m = {0, 1, 1, 0} m = {1, 2, 0, 0} m = {2, 0, 0, 1}
3 −0.434 413 9992 −0.199 671 5487 −0.073 730 7436
5 −0.443 627 1461 −0.202 214 7410 −0.075 331 1657
7 −0.444 111 7378 −0.202 309 1353 −0.075 548 0019
9 −0.444 122 0336 −0.202 269 9562 −0.075 593 0131

11 −0.444 120 4735 −0.202 256 9562 −0.075 604 2315
13 −0.444 120 2121 −0.202 254 5161 −0.075 607 0699
15 −0.444 120 1897 −0.202 254 2334 −0.075 607 7766
17 −0.444 120 1888 −0.202 254 2337 −0.075 607 9515
19 −0.444 120 1889 −0.202 254 2444 −0.075 607 9948
21 −0.444 120 1889 −0.202 254 2478 −0.075 608 0056
23 −0.444 120 1889 −0.202 254 2485 −0.075 608 0083
25 −0.444 120 1889 −0.202 254 2486 −0.075 608 0090

Alcaraz et al [8] −0.444 1201 −0.202 2542 −0.075 6080

of considered functions. At every step the correction to the normalized value (33) of the
monodromy matrix trace (7) is evaluated: τ̃2, τ̃3, τ̃4, etc., which gives the corresponding
corrections to the integrals of motion.

4. Results of computations

To ensure the correctness of computations we compare their results with the numeric data
of [8], where energy levels of the 4-particle homogeneous XXZ model were found by the
direct solution of the Bethe equations (11). The energy levels were obtained from the Bethe
parameters via the following formula:

E = sin2(2�s)

2s

M∑
m=1

1

cos(2�s) − cosh(2um)
.

In spite of the completely different algorithms, the coincidence up to seven digits presented
in [8] is achieved. The discrepancy in the last digit for the state with multi-index {0, 1, 1, 0}
registered in table 1 is apparently due to incorrect rounding in [8].

4.1. XXZ nearest-neighbour spacing distribution

The investigation of statistical properties of quantum-mechanical system spectra, in particular,
nearest-neighbour spacing distribution of levels is of great practical importance. The
theoretical treatment of this issue was initiated by the work of Wigner [9] where the following
formula for level nearest-neighbour spacing distribution density had been proposed:

P(σ) = 2βσ exp (−βσ 2). (36)

Here coefficient β is defined via the average level spacing. Wigner’s formula was later specified
and extended over the variety of systems with different symmetries within the framework of
random matrix theory [10]. The integrable systems stand out against the others because of

7
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the absence of level repulsion; in other words, their distribution density P(σ) does not tend to
zero at σ → 0 unlike (36). It is asserted [11] that the level spacings for the integrable systems
are distributed according to the damped exponential law

P(σ) = β exp (−βσ). (37)

Formula (37) was obtained in the semi-classical limit and so should be considered only as an
approximation.

In this connection, it is of interest to estimate by direct computations the extent of
applicability of (37) to the XXZ model. On the other hand, this enables us to check the
effectiveness of the technique stated in the previous section in practice.

Calculations are made for the chain of N = 100 particles with M = 3 excitations, which
gives

(
N+M−1

M

) = 171 700 different states. The spin of each particle is s = 3/2, � = 0.25 and
shift parameters cn, n = 1, . . . , N , are randomly distributed within the interval [−5 . . . 5].

For each state an asymptotic approximation as described at the ending of the previous
section was constructed. The series was truncated as the 10-digit accuracy was achieved or
the asymptotic started to diverge. In the latter condition, which occurs for about 17% of states,
the Bethe equations were applied to define more precisely the obtained values. In any case
the length of the series used varied from 5 to 30.

In figure 2, the spectral characteristics for several integrals of various orders
(I−

13, I
+
26, I

−
38, I51) are shown. Integral values are normalized to symmetric functions on shifts

cn, n = 1, . . . , N :

Ĩ±
j = I±

j

2−N e∓(c1+···+cN )
∑

n1<n2<···<nj−1
exp

(±2(cn1 + cn2 + · · · + cnj−1)
) ,

j = 2, . . . , [N/2] + 1. (38)

Histograms of 500 bars on the left-hand side of figure 2 represent the densities of level
distribution pj ; ones on the right-hand side show the densities of the corresponding nearest-
neighbour spacing distribution Pj . One can see the characteristics of spectrum depend on the
integral order j .

The integrals of low order have the highly clusterized spectrum. It consists of strongly
isolated domains of eigenvalue concentration. Each large-scale cluster contains ∼5000 values
and is characterized by the unit value of the specific index mn, which corresponds to parameter
rn (26) with a large negative real part for ‘positive’ integrals and a large positive real part for the
‘negative’ ones. e.g. a cluster which can be seen by the unaided eye in figure 2 at Ĩ−

13 ≈ −3.25
is formed by the eigenvalues with multi-indices like m = {·, ·, ·, ·, ·, ·, ·, ·, ·, 1, . . .} (unit
stands in the 10th vacancy, r10 ≈ 3.39 + π

2 i). Large-scale cluster consists of a hundred of
twofold-overlapped small clusters of 100 eigenvalues. The fine structure of the small clusters
is determined by the relations of rn with large positive real part for ‘positive’ integrals and large
negative real part for the ‘negative’ ones. The strongly pronounced clusterization is caused
primarily by an inhomogeneity due to which the eigenvalues are expressed via the parameters
of greatly unequal values. In a homogeneous case the clusterization also exists but in a lesser
extent.

As the order of integral grows, clusters become wider and wider with respect to the
distance between them and mutually overlap. Finally, most of eigenvalues of higher order
integrals form a common single bulk with the chaotic inner structure (I−

38, I51 spectra in
figure 2).

On the nearest-neighbour spacing distribution of low order integral the distinct peaks are
observed. This fact is in correlation with the observed spectrum clusterization for such an
integral. Indeed, the fine structure of the small clusters considerably coincides because it is

8
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Figure 2. Eigenvalue distributions pj (left) and nearest-neighbour spacing distributions Pj (right).

determined by the same set of parameters; as a result, some spacings are found much more
frequently than the others. It looks realizable to solve an inverse problem, i.e. to obtain the
values of rn using the peak locations on Pj and thus to get information about inhomogeneity
parameters cn, n = 1, . . . , N .

Unless deflections concerned with the clusterization are taken into account, the description
of the spacing distribution by formula (37) is rather good at small σ (see smooth curves on
the right-hand side graphics in figure 2). But at σ comparable with the average distance
between the levels β and the larger ones this description becomes evidently incorrect, since
the distribution density decreases considerably slower as compared with the exponential. The
more correct approximation at such σ is provided by the power function Pj ∼ σ−aj , which

9
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Figure 3. Nearest-neighbour spacing distribution at large σ for I+
26 (left) and I51 (right).

Table 2. Superscript aj of power function, approximating nearest-neighbour spacing distribution
density, for several integrals of motion.

I+
26 I−

28 I+
31 I−

33 I+
36 I−

38 I+
41 I−

43 I+
46 I−

48 I51

aj 1.97 2.10 2.03 1.96 2.11 2.03 2.18 1.90 1.97 2.12 1.98

is displayed in figure 3. The magnitude of superscript aj varies within the rather close limits
namely ∼ 2 ± 1

4 , as is shown in table 2.

Acknowledgments

The author would like to thank Professor I V Komarov for useful discussions.

References

[1] Bytsko A G 2003 J. Math. Phys. 44 3698
[2] Heisenberg W 1928 Z. Phys. 49 619
[3] Bogoliubov N M, Izergin A G and Korepin V E 1993 Quantum Inverse Scattering Method and Correlation

Functions (Cambridge: Cambridge University Press)
[4] Sklyanin E K 1995 Prog. Theor. Phys. Suppl. 118 35
[5] Kharchev S and Lebedev D 1999 Lett. Math. Phys. 50 53
[6] Derkachov S E, Korchemsky G P and Manashov A N 2003 J. High Energy Phys. JHEP7(2003)47
[7] Antipov A G and Komarov I V 2006 Physica D 221 101
[8] Alcaraz F C and Martins M J 1989 J. Phys. A: Math. Gen. 22 L99
[9] Wigner E P 1957 Oak Ridge Natl Lab. Rep. (Gatlinburg Conference on Neutron Phys. by Time-of-Flight) 2309

59
[10] Mehta M L 2004 Random Matrices (Amsterdam/New York: Elsevier/Academic)
[11] Berry M V and Tabor M 1977 Proc. R. Soc. A 356 375

10

http://dx.doi.org/10.1063/1.1591054
http://dx.doi.org/10.1007/BF01328601
http://dx.doi.org/10.1143/PTPS.118.35
http://dx.doi.org/10.1023/A:1007679024609
http://dx.doi.org/10.1088/1126-6708/2003/7/47
http://dx.doi.org/10.1016/j.physd.2006.07.014
http://dx.doi.org/10.1088/0305-4470/22/3/007
http://dx.doi.org/10.1098/rspa.1977.0140

	1. Introduction
	2. Separation of variables (SoV)
	3. Baxter equation in a special isotropic limit
	3.1. First approximation
	3.2. $R$

	4. Results of computations
	4.1. $XXZ$

	Acknowledgments
	References

